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ABSTRACT

This paper describes a new method of sensor failure
detection, isolation, and accommodation using a neural

network approach. In a propulsion system such as the

Space Shuttle Main Engine, the dynamics are usually

very complicated and sometimes not well known.
However, the number of variables measured is usually

much higher than the order of the system. This built-in

redundancy of the sensors can be utilized to detect and

correct sensor failure problems. The goal of the

proposed scheme is to train a neural network to identify
the sensor whose measurement is not consistent with

other sensor outputs. Another neural network is trained
to recover the value of critical variables when their

measurements fail. Techniques for training the network

with a limited amount of data are developed. The

proposed scheme is tested using the simulated data of

the Space Shuttle Main Engine (SSME) inflight sensor

group.

INTRODUCTION

In 1980, a ground test of the Space Shuttle Main

Engine (SSME) experienced an erroneous measurement

of the Main Combustion Chamber pressure (PC) [1]. Pc

is used for the closed loop thrust level control as well

as closed loop mixture ratio calculations. The failed

sensor reading led the testing to a severely abnormal

operating condition. An internal fire and subsequent

explosion occurred as a result of the sensor failure.

The engine was virtually destroyed. Also, during the

course of the Space Shuttle program there have been
numerous incidents of sensor failures which caused

component damage, unnecessary shutdowns and delays

of the program.

In order to improve the operational reliability it is

necessary to validate the measured sensor data, isolate

any failed sensor and recover the failed critical
measurement. There has been an extended effort in

applying analytical redundancy to the sensor failure
detection and isolation in the jet engine failure

diagnosis problem [2]. In general, this approach

utilizes the engine model and the Kalman Filter to

detect and isolate sensor failures. This technique is

strongly dependent upon a reliable system model which

may not always be attainable in a complex system.

This paper proposes that neural networks be trained

by experimental data and learn the relationships among
the redundant sensors. These networks are then used to

check the validity of the sensor readings and provide an

estimated value for failed sensors. This paper will first

describe some of the system dynamics of the Space

Shuttle Main Engine. The selection and the training

algorithms of the neural networks are then presented,

followed by the simulation results of the proposed

approach. F'mally, a discussion of the research is

presented.

The SSME DYNAMICS

The Space Shuttle Main Engine under study is by
far the most complicated and power intense machine

among propulsion engines. A simplified description of

the system operation follows [3,4]. There are three

main engines in a space shuttle orbiter. Each engine

produces a sea level thrust of 375,000 Ib and a vacuum
thrust of 470,000 lb. A schematic diagram of the

propellant flows is shown in Fig. 1. Pressurized fuel,

provided by the fuel tank, flowing through the low

pressure fuel pump and the high pressure fuel pump, is
fed to the regenerative cooling and the preburners. A

pressurized oxidizer tank provides the oxidizer which
flows through the low pressure oxidizer pump and the

high pressure oxidizer pump where the output flow

splits into the two prebumers and the main combustion

chamber as shown in Fig. 1.

The dynamics of the system operation include: (1)

the perform,'mce of turbopumps; (2) the heat exchange

of the cooling flows: (3) the combustion of the two

prebumers and the main chamber; (4) the control valve

actions; and (5) the energy properties of oxygen and

hydrogen in different phases. Most of these dynamic
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properties are based on empirical data

and are highly nonlinear. For example,

a hydrogen energy property table has to

be used to calculate the relationships

among the internal specific energy, the

pressure, the temperature, and the
density at a given state. In order to

demonstrate the complexity of the

system, the dynamics of a typical hot

gas turbine, which represents only a
small portion of the whole SSME

system, is shown here. Given upstream

pressure Pu, the upstream temperature

T u, the downstream pressure Pv, the gas

constant R, the specific heat constant

CT, the rotational speed S, the specific

heat ratio 3', the flowrate DW and the

empirically determined turbine

performance map ftm(') in Figure 2,

the available torque T and downstream

temperature T_ can be calculated by

following equations [3].

S
_,=

PR = Pv TT'-

X = ftto(Pk,¢)

T = Pu x

Figure 1. SSME Propellant Flow Schematic

(1)
'_PR1

Figure 2. Hot Gas Turbine Performance Map

(2)

O)

(4)

(5)
TS

Tt_ = T u - 9340CrDW

From the dynamics described above it can he seen

that there exist certain defined relationships among

these measured variables, although these relationships

may be complicated. Further analysis reveals that

analytical redundancy does exist, i.e. an unknown

variable can be estimated using other relaied variables.

However, with four turbopumps and three combustors

operating simultaneously, it is extremely difficult to

design a Kalman F'dter type estimator for any selected

measurement without grossly simplifying the dynamics.

SSME SENSOR GROUPS

There are hundreds of sensors used to collect on-

line operational data. However, only 21 of them are

used for inflight control/shutdown purposes. These

sensors include: speed sensors for three of the

turbopumps; a fuel flowmeter, a pressure sensor for the

main combustion chamber (MCC); pressure and

temperature sensors for the cooling ducts; and pressure

and temperature sensors for the selected pump and

turbine inlet and discharge points. Among these

sensors only MCC pressure, high pressure fuel pump

(HPFP) inlet flow, HPFP inlet pressure and HPFP inlet

temperature are used for controlling the engine
performance. The rest of the inflight sensors are used

to monitor the operating condition and to activate the

engine shutdown when the red-line condition is
detected.

In order to simplify the problem, the scope of this

study is limited to the sensor failure detection during
the nominal operating condition. The study can be

easily extended to detect sensor failures for abnormal

operating conditions if data for these conditions is

obtained. Also, only the single sensor failure problem
is addressed because we assume that the simultaneous
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sensor failure situation is not likely to occur and

consecutive sensor failures can be handled by cascading
single sensor failures.

From the analysis of the dynamic relationships of

these selected measurements, an "influence sensor map"

can be constructed. This "influence sensor map" is the
simplified description of how a measurement can be

directly influenced by other measurements, Again, this
relationship may be complicated and not intuitive even

to an expert. Among the SSME sensors, there are two

closely related measurement clusters, one for the fuel

system and one for the oxidizer system. Figure 3

shows the "influence sensor map" for the fuel system.

This cluster of measurements will be used to study the

sensor failure detection and signal reconstruction using
network computing. The sensors selected here are:

P6: Main Combustion Cooling Pressure

T6: Main Combustion Cooling Temperature

Qfd I: Low Pr. Fuel Pump outlet flow, in volume

Pfdl: Low Pr. Fuel Pump outlet Pressure

Tfdl: Low Pr. Fuel Pump outlet Temperature
Pfd2: High Pr. Fuel Pump exit Pressure

Tfi2d: High Pr. Fuel Turbine Downstream Pressure

Sfl: Low Pr. Fuel Turbopump Speed

Sf2: High Pr. Fuel Turbopump Speed
Pc: Main Combustion Chamber Pressure

The sensor failure detection and signal
reconstruction problem can be restated as:

For a given set of measurements at any time
instant:

1. identify the measurement which is not consistent
with others

2. estimate the value for the identified failed sensor.

NEURAL NETWORK SELECTION

The neural network structure selected for this task

is a muitilayer feedforward network with the sigmoidal
activation function for each node (Figure 4) [5]. There

are two networks to be trained for the two described
functions: failure detection and lost variable estimation.

The fast network is to detect inconsistent sensor

readings. The neural network used in this simulation

consists of 10 input nodes, 30 first hidden layer nodes,

30 second hidden layer nodes, and 10 output nodes.

The normalized sensor values are applied to the input

nodes. The 10 output nodes on the final layer represent

the confidence levels of the 10 corresponding sensor

readings. The functional requirement of this network is

to process a given set of normalized sensor

measurements and generate a list of confidence

indicators for the sensor readings. For example, for a

good set of sensor readings, the output of this neural

p6_p c
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Figure 3. Influnce Sensor Map of SSME Fuel System
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Figure 4. Feedforward Neural Network Architecture

network is expected to have high confidence indicators

(values close to 1) for all sensors. If there is a sensor

failure, this network's output shall be an indication of

the low confidence (a value close to O) in the failed

sensor while indicating high confidences in other
sensors.

The second neural network is to perform the
recovery of the measurement due to the failed sensor.

In this particuI_ example, the network will use the

other nine measurements to estimate the collapsed

sensor reading identified by the previous network. The
network selected here also has two hidden layers. The

network chosen for the simulation consists of 9 input
nodes, 30 first hidden layer nodes, 30 second hidden

layer nodes, and a single output node for the sensor

v,'u'iable to be recovered. Usually, only the sensor

readings that ate used in the control loop need to be
recovered.



TRAINING THE NETWORKS

In this study, the Digital Transient Model [3] is

used to simulate the dynamic behavior of the system.

During start up, the main engine power level reaches

100 percent power within 4 seconds. Since this
transient curve covers a very wide range of operation,

it is assumed that the information gathered during this

time period is rich enough to train the neural networks
for both sensor failure detection and failed sensor

recovery. Only data fi'om a normal operation is used

in this study. Also, the data for the first second of

engine operation are discarded because most of the
measurements stay constant during that time period.

The data samples are recorded at the rate of 50 Hz. In
total, there are 150 sets (3 seconds) of sensor readings

available for the neural network training.

A. Training for Sensor Failure Detection

As previously described, the purpose of this network

is to single out the sensor reading which is not

consistent with the other measurements. For a given set
of sensor readings we can establish a range for each

sensor which we consider "normal". These ranges can
usually be established by combining the experts'

knowledge about the process, the sensor characteristics,

and the historical data base. Once the range of each

measurement is selected, the goal states of the output

nodes can easily be determined according to whether

the measurement is within the range or not. A back-

propagation algorithm is used here to train the neural

network. The randomized iteration sequence is
described as follows:

(I) randomly select one of the 150 sets of sensor

readings,

(2) randomly select one of the 10 sensors to be trained,

(3) generate a random Gausian noise o) with zero mean

and standard deviation _ = 1.5 _, where ±El is the

valid range for the ith sensor reading Si. Add the

noise ¢o to Si to create a new sensor reading St'.

This selection of noise generates about 50% out-of-

range training samples.
(4) if St" is within the valid range of S_ then set the

desired output O_ of the neural network to 0.9,

otherwise set it to 0.1, also set all other desired

outputs to 0.9,

(5) adjust the weights according to the back-
propagation algorithm,

(6) repeat steps (1) to (5) until the network can reliably

indicate the failed sensor for any given situation.

B. Training for Failed Sensor Recovery
When a critical sensor reading is found to be false,

it is necessary to estimate its value using other

correlated measurements. A simple approach is to have
one estimation network for each failed sensor that needs

to be recovered. This network will have n-I input

nodes and 1 output node. Given the normal operation

data set, the training is straight forward. The

performance of the trained network is usually excellent.

The training algorithm for the estimation of ith sensor
is:

(1) randomly select one of the 150 sets of sensor

readings,

(2) apply the other 9 sensor inputs to the network,

(3) calculate the error E, = (SI - 03 for the back-

propagation training,
(4) adjust the weights of the network according to the

back-propagation algorithm,

(5) repeat steps (1) to (4) until the result of the
estimation is acceptable.

Due to the redundancy of these selected sensors, it

is expected that there is a certain degree of similarity in

the estimation networks for different sensors. Thus, it

may be much more efficient to have one estimation

network that can estimate any selected missing variable.

A single network to recover all variables in the SSME

fuel system will have I0 input nodes and 10 output

nodes. The training algorithm is more complicated and
the performance is not as good as a single sensor

estimator. Here, we limit our scope to the single
estimator only.

SIMULATION RESULTS

As described in the previous section, the data

generated by the Digital Transient Model (DTM) is

used in the simulation. Initially, the data collected

during the start up transient (i.e. 1.0 < Time < 4.0
seconds) are used to train the neural networks. The

first network is trained to capture the relationship

among the measurements so that a failed sensor can be

identified. Variable step size for the weight

adjustments is used to help fine tune the network for

better performance. Figure 5 shows the percentage of

error during the training of the network. The error

percentage is calculated for every 2,500 training
iterations. It can be seen that the network is able to

reach more than 90% accuracy in predicting any given

sensor failure after about one million samples. Further
fine tuning has reduced the error to less than 5%.

These errors occur in the neighborhood of the defined

cutoff values of valid sensor readings. Because of the
continuous nature of the selected network it is

reasonable to have a gray area which indicates that the
sensor failure is "uncertain". A second network which

is to recover the Main Combustion Chamber Pressure

measurement is also trained using the start up transient
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data. The input to this network consists of the signals

from the other 9 sensors and its only output is the

estimation of MCC pressure. The training is

straightforward and the estimation results are within a

few percent after several thousand iterations.
These two networks were tested for an extended run

of the DTM simulation. In this simulation, the

controller starts the engine, powers the engine to 100%
in four seconds, holds at 100% for one second, reduces

the engine power to 65% in the next five seconds, holds
at 65% for three more seconds, and finally gradually

increases the power to I00%. This is to emulate the

operation profile of the SSME during the so-called
"Max-Q Throttle" operation.

Case 1: HPFTP Speed Sensor Failure at T = 7.0

Figure 6 shows the case that the High Pressure Fuel

Turbopump speed sensor Sf2 starts failing at T = 7.0.
The failure is a soft failure, i.e. a degraded reading.

The rate of failure is -350 RPM per second off the
actual value. It can be seen that the confidence

checking network is able to detect the discrepancy
within 0.5 seconds by indicating the confidence of that

sensor is low (close to 0). Figure 7 shows the outputs

of the network during the Sf2 sensor failure. It shows

that the failed sensor can be clearly identified within a

very short period of time after it started degrading.

Case 2: MCC Pressure Sensor Failure at T = 8.0

Figures 8 and 9 show the case in which the Main

Combustion Chamber pressure sensor Pc starts failing

at T = 8.0. The rate of failure is -300 PSI per second

off the actual value. Figure 8 shows the outputs of the
network which clearly indicate high confidence on all

other sensors while singling out the Pc sensor failure.

Figure 9 indicates that the confidence level of the

measurement falls quickly from high (close to 1) to low

(close to 0) when the measured value moves away from

the real value. The on-line estimation of Pc using the

second network is also shown in Figure 9. The

estimated value of Pc closely follows the actual value

and can be used for backup when the Pc sensor fails.

This arrangement provides an uninterrupted and

undegraded control after the sensor failure.

CONCLUSIONS

Neural networks are proposed to detect sensor
failures and recover the lost measurements from a

group of redundant sensors. A two step approach is

employed. The first network is trained to detect the
sensor which is inconsistent with other sensor readings.
The second network is trained to recover the sensor

readings which are critical in operation. This approach
is especially useful when the relationship among these
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sensors can not be clearly identified or is too complex
for a Kalman Filter estimator. The network can be

trained using the experimental data for the selected

condition. The dynamic relationship among the sensors
is learned using the back-propagation algorithm.

The proposed approach is applied to the Space

Shuttle Main Engine inflight sensor group through the

Digital Transient Model Simulation. The results clearly

show the adequacy of the approach under the tested

condition. It is conceivable that the approach can be

extended to cover other operating conditions if the
sensor data for those conditions are collected and

applied to training.

The high speed capability of neural networks makes

the proposed approach even more attractive in the real-

time control problem [6]. It was shown in this study

that the sensor measurements used for control purposes
can be easily recovered without delay. This feature is

especially useful in the design of an Intelligent
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